MindPeeker Logo
Specifications

Technical Specifications

Comprehensive technical specifications for MindPeeker platform integration and deployment

System Architecture

Core Components

graph TB
    subgraph "Client Layer"
        WEB[Web Application]
        MOBILE[Mobile Apps]
        API_CLIENT[API Clients]
    end
    
    subgraph "Gateway Layer"
        GATEWAY[API Gateway]
        AUTH[Authentication Service]
        RATE_LIMIT[Rate Limiting]
    end
    
    subgraph "Application Layer"
        SESSION[Session Service]
        ANALYSIS[Analysis Engine]
        NOTIFICATION[Notification Service]
        BILLING[Billing Service]
    end
    
    subgraph "AI/ML Layer"
        CORE_AI[Core AI Engine]
        MODEL_MGR[Model Manager]
        INFERENCE[Inference Service]
        TRAINING[Training Pipeline]
    end
    
    subgraph "Data Layer"
        POSTGRES[(PostgreSQL)]
        REDIS[(Redis Cache)]
        S3[(Object Storage)]
        BACKUP[Backup System]
    end
    
    subgraph "Infrastructure"
        K8S[Kubernetes Cluster]
        MONITORING[Monitoring Stack]
        LOGGING[Logging System]
        SECURITY[Security Layer]
    end
    
    WEB --> GATEWAY
    MOBILE --> GATEWAY
    API_CLIENT --> GATEWAY
    
    GATEWAY --> AUTH
    GATEWAY --> RATE_LIMIT
    GATEWAY --> SESSION
    GATEWAY --> ANALYSIS
    GATEWAY --> NOTIFICATION
    GATEWAY --> BILLING
    
    SESSION --> CORE_AI
    ANALYSIS --> CORE_AI
    CORE_AI --> MODEL_MGR
    CORE_AI --> INFERENCE
    CORE_AI --> TRAINING
    
    SESSION --> POSTGRES
    ANALYSIS --> POSTGRES
    AUTH --> POSTGRES
    BILLING --> POSTGRES
    
    INFERENCE --> REDIS
    SESSION --> REDIS
    
    TRAINING --> S3
    SESSION --> S3
    
    POSTGRES --> BACKUP
    S3 --> BACKUP

Technology Stack

Frontend Technologies

  • Framework: Nuxt 4 (Vue 3)
  • UI Library: Nuxt UI 4.0+
  • Styling: Tailwind CSS
  • State Management: Pinia
  • TypeScript: Full TypeScript support
  • Build Tools: Vite
  • Package Manager: pnpm

Backend Technologies

  • Runtime: Node.js 20+
  • Framework: Nuxt Nitro
  • Language: TypeScript
  • API: RESTful + GraphQL
  • Authentication: JWT + OAuth 2.0
  • Database: PostgreSQL 15+
  • Cache: Redis 7+
  • Message Queue: Redis + Bull Queue

AI/ML Technologies

  • Core Engine: Custom-trained neural networks
  • Framework: PyTorch + TensorFlow
  • Model Serving: TorchServe + TensorFlow Serving
  • GPU Support: CUDA 12+
  • Model Format: ONNX + TorchScript
  • Inference Optimization: TensorRT

Infrastructure Technologies

  • Containerization: Docker + Kubernetes
  • Cloud Provider: AWS (multi-region)
  • Load Balancer: AWS ALB
  • CDN: CloudFront
  • Monitoring: Prometheus + Grafana
  • Logging: ELK Stack
  • Security: WAF + DDoS Protection

API Specifications

REST API

Base URL

Production: https://api.mindpeeker.com/v1
Staging: https://staging-api.mindpeeker.com/v1
Development: https://dev-api.mindpeeker.com/v1

Authentication

Authorization: Bearer <jwt_token>
X-API-Key: <api_key>
X-Client-Version: <version>

Rate Limiting

  • Standard Tier: 100 requests/minute
  • Professional Tier: 1,000 requests/minute
  • Enterprise Tier: 10,000 requests/minute
  • Burst Limit: 2x sustained rate

Response Format

{
  "success": true,
  "data": {},
  "message": "Operation successful",
  "timestamp": "2024-01-01T00:00:00Z",
  "requestId": "req_123456789"
}

WebSocket API

Connection Endpoint

wss://api.mindpeeker.com/v1/ws

Message Format

{
  "type": "session_update",
  "sessionId": "session_123",
  "data": {},
  "timestamp": "2024-01-01T00:00:00Z"
}

Connection Limits

  • Concurrent Connections: 100 per user
  • Message Rate: 60 messages/minute
  • Connection Timeout: 24 hours
  • Reconnection: Exponential backoff

Database Specifications

PostgreSQL Configuration

Primary Database

  • Version: PostgreSQL 15.4
  • Engine: Aurora PostgreSQL
  • Instance Size: db.r6g.2xlarge (8 vCPU, 64GB RAM)
  • Storage: 1TB SSD, auto-scaling to 10TB
  • Replication: Multi-AZ with 1 read replica
  • Backup: Point-in-time recovery (35 days)

Schema Design

-- Users table
CREATE TABLE users (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    email VARCHAR(255) UNIQUE NOT NULL,
    username VARCHAR(100) UNIQUE NOT NULL,
    password_hash VARCHAR(255) NOT NULL,
    tier VARCHAR(50) NOT NULL DEFAULT 'basic',
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);

-- Sessions table
CREATE TABLE sessions (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    user_id UUID NOT NULL REFERENCES users(id),
    cue TEXT NOT NULL,
    session_type VARCHAR(50) NOT NULL,
    status VARCHAR(50) NOT NULL DEFAULT 'pending',
    metadata JSONB,
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    completed_at TIMESTAMP WITH TIME ZONE
);

-- Analysis results table
CREATE TABLE analysis_results (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    session_id UUID NOT NULL REFERENCES sessions(id),
    result_type VARCHAR(100) NOT NULL,
    confidence_score DECIMAL(5,4) NOT NULL,
    data JSONB NOT NULL,
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);

Redis Configuration

Cache Layer

  • Version: Redis 7.2
  • Engine: ElastiCache Redis
  • Node Type: cache.r6g.large (2 vCPU, 13GB RAM)
  • Cluster: 3-node cluster with automatic failover
  • Persistence: Backup every 6 hours
  • Retention: 30 days

Data Structure

Session Cache:
- session:{id} -> Session data (TTL: 24h)
- session:{id}:status -> Session status (TTL: 1h)
- session:{id}:results -> Analysis results (TTL: 7d)

User Cache:
- user:{id} -> User profile (TTL: 1h)
- user:{id}:permissions -> User permissions (TTL: 30m)
- user:{id}:rate_limit -> Rate limit counter (TTL: 1m)

System Cache:
- config:system -> System configuration (TTL: 5m)
- models:active -> Active model list (TTL: 10m)
- stats:realtime -> Real-time statistics (TTL: 30s)

AI Model Specifications

Core Model Architecture

Base Model

  • Architecture: Transformer-based with attention mechanisms
  • Parameters: 70 billion parameters
  • Training Data: 10TB+ of curated psychic intelligence data
  • Training Time: 6 months on 8x A100 GPUs
  • Inference Latency: <2 seconds average
  • Accuracy: 94.7% on validation dataset

Model Variants

Remote Viewing Model:
- Specialized in visual and spatial data
- Trained on 500K+ remote viewing sessions
- Optimized for geographical and object recognition

Dowsing Model:
- Specialized in yes/no and location queries
- Trained on 1M+ dowsing sessions
- Optimized for binary classification and probability

Precognition Model:
- Specialized in temporal predictions
- Trained on 200K+ precognitive sessions
- Optimized for time-series forecasting

Intuitive Analysis Model:
- Specialized in complex pattern recognition
- Trained on 300K+ analytical sessions
- Optimized for multi-dimensional analysis

Model Deployment

Serving Infrastructure

  • Framework: TorchServe + TensorFlow Serving
  • GPU Nodes: NVIDIA A100 (40GB)
  • Concurrency: 100 concurrent requests per model
  • Scaling: Auto-scaling based on queue depth
  • Versioning: A/B testing support
  • Monitoring: Real-time performance metrics

Model Updates

  • Frequency: Monthly model updates
  • Rollout: Blue-green deployment
  • Validation: Shadow mode testing
  • Rollback: Automatic rollback on degradation
  • Monitoring: Continuous performance tracking

Security Specifications

Authentication & Authorization

JWT Token Structure

{
  "header": {
    "alg": "RS256",
    "typ": "JWT",
    "kid": "key-id"
  },
  "payload": {
    "sub": "user-uuid",
    "iat": 1640995200,
    "exp": 1641081600,
    "aud": "mindpeeker-api",
    "iss": "mindpeeker-auth",
    "tier": "professional",
    "permissions": ["session:create", "analysis:read"]
  }
}

API Key Management

  • Format: 40-character hexadecimal string
  • Rotation: Every 90 days
  • Scoping: Limited to specific endpoints
  • Rate Limits: Per-key rate limiting
  • Revocation: Immediate revocation support

Data Protection

Encryption Standards

  • In Transit: TLS 1.3 with AES-256-GCM
  • At Rest: AES-256-XTS
  • Key Management: AWS KMS
  • Key Rotation: Annual key rotation
  • Perfect Forward Secrecy: Enabled

Data Classification

Public Data:
- Marketing materials
- Public documentation
- General platform information

Internal Data:
- System metrics
- Performance data
- Internal documentation

Confidential Data:
- User personal information
- Session metadata
- Billing information

Restricted Data:
- Session content
- Analysis results
- AI model parameters

Compliance Standards

Regulatory Compliance

  • GDPR: Full compliance for EU users
  • CCPA: Compliance for California users
  • SOC 2: Type II certification
  • ISO 27001: Information security management
  • HIPAA: Healthcare data protection (where applicable)

Privacy Controls

  • Data Minimization: Collect only necessary data
  • Purpose Limitation: Use data only for stated purposes
  • Retention Policies: Automatic data deletion
  • User Rights: Access, correction, deletion rights
  • Consent Management: Granular consent controls

Performance Specifications

Response Time Targets

API Endpoints

Authentication:
- Login: <500ms (95th percentile)
- Token refresh: <200ms (95th percentile)
- Logout: <100ms (95th percentile)

Session Management:
- Create session: <1s (95th percentile)
- Get session: <500ms (95th percentile)
- Update session: <800ms (95th percentile)
- Delete session: <300ms (95th percentile)

AI Analysis:
- Start analysis: <2s (95th percentile)
- Get results: <500ms (95th percentile)
- Real-time updates: <100ms (95th percentile)

System Performance

Database:
- Query response: <100ms (95th percentile)
- Connection pool: 95% utilization
- Transaction time: <50ms average

Cache:
- Hit ratio: >95%
- Response time: <10ms (95th percentile)
- Memory usage: <80% capacity

AI Models:
- Inference latency: <2s average
- Queue time: <30s (95th percentile)
- GPU utilization: >80%

Scalability Targets

Horizontal Scaling

  • API Servers: Auto-scale 1-100 instances
  • Database: Read replicas up to 10 nodes
  • Cache: Cluster up to 50 nodes
  • AI Models: Auto-scale based on demand
  • Storage: Unlimited object storage

Capacity Planning

User Growth:
- Concurrent users: 10,000+
- Daily active users: 100,000+
- Monthly active users: 1M+

Session Volume:
- Sessions per day: 1M+
- Peak sessions per hour: 100K+
- Storage per session: 10MB average

API Traffic:
- Requests per day: 100M+
- Peak requests per minute: 1M+
- Data transfer: 10TB+ per day

Monitoring & Observability

Metrics Collection

Application Metrics

business_metrics:
  - sessions_created_total
  - sessions_completed_total
  - analysis_duration_seconds
  - user_tier_distribution
  - api_usage_by_endpoint

technical_metrics:
  - http_requests_total
  - http_request_duration_seconds
  - database_connections_active
  - cache_hit_ratio
  - ai_inference_duration_seconds

infrastructure_metrics:
  - cpu_utilization_percent
  - memory_utilization_percent
  - disk_io_operations_total
  - network_bytes_transmitted
  - gpu_utilization_percent

Alerting Rules

critical:
  - name: "High Error Rate"
    condition: "error_rate > 5%"
    duration: "5m"
    severity: "critical"
  
  - name: "AI Model Down"
    condition: "model_availability < 99%"
    duration: "1m"
    severity: "critical"

warning:
  - name: "High Response Time"
    condition: "p95_response_time > 2s"
    duration: "10m"
    severity: "warning"
  
  - name: "Database Connection Pool High"
    condition: "db_connections > 80%"
    duration: "15m"
    severity: "warning"

Logging Standards

Log Format

{
  "timestamp": "2024-01-01T00:00:00.000Z",
  "level": "INFO",
  "service": "session-service",
  "trace_id": "trace-123456",
  "span_id": "span-789012",
  "user_id": "user-456789",
  "session_id": "session-123456",
  "message": "Session created successfully",
  "metadata": {
    "session_type": "remote_viewing",
    "cue_length": 150,
    "processing_time_ms": 1250
  }
}

Log Retention

  • Application Logs: 30 days
  • Access Logs: 90 days
  • Audit Logs: 1 year
  • Security Logs: 3 years
  • Archive Logs: 7 years (cold storage)

Deployment Specifications

Environment Configuration

Development Environment

development:
  replicas: 1
  resources:
    cpu: "500m"
    memory: "1Gi"
  database:
    type: "postgresql"
    size: "small"
  cache:
    type: "redis"
    size: "micro"
  ai_models:
    count: 1
    gpu: false

Staging Environment

staging:
  replicas: 2
  resources:
    cpu: "1000m"
    memory: "2Gi"
  database:
    type: "postgresql"
    size: "medium"
  cache:
    type: "redis"
    size: "small"
  ai_models:
    count: 2
    gpu: true

Production Environment

production:
  replicas: 10
  resources:
    cpu: "2000m"
    memory: "4Gi"
  database:
    type: "postgresql"
    size: "xlarge"
  cache:
    type: "redis"
    size: "large"
  ai_models:
    count: 20
    gpu: true

CI/CD Pipeline

Build Process

stages:
  - name: "lint"
    tool: "eslint"
    timeout: "5m"
  
  - name: "test"
    tool: "jest"
    coverage: ">80%"
    timeout: "10m"
  
  - name: "security_scan"
    tool: "snyk"
    timeout: "5m"
  
  - name: "build"
    tool: "docker"
    timeout: "15m"
  
  - name: "deploy"
    tool: "helm"
    timeout: "20m"

Deployment Strategy

  • Canary Releases: 10% traffic initially
  • Gradual Rollout: 10% → 50% → 100% over 1 hour
  • Health Checks: Automated health verification
  • Rollback: Automatic rollback on failure
  • Monitoring: Real-time deployment metrics

Integration Specifications

Third-Party Integrations

Payment Processing

stripe:
  api_version: "2023-10-16"
  webhooks:
    - "payment_intent.succeeded"
    - "invoice.payment_succeeded"
    - "customer.subscription.created"
  features:
    - "subscriptions"
    - "one_time_payments"
    - "international_cards"

Email Communications

sendgrid:
  api_version: "v3"
  templates:
    welcome: "d-1234567890"
    subscription_created: "d-0987654321"
    analysis_complete: "d-1122334455"
  features:
    - "transactional_email"
    - "marketing_campaigns"
    - "email_analytics"

Analytics & Monitoring

analytics:
  providers:
    - name: "mixpanel"
      events: ["user_signup", "session_created", "analysis_completed"]
    - name: "google_analytics"
      events: ["page_view", "user_engagement"]
  monitoring:
    - name: "datadog"
      metrics: ["api_performance", "user_activity", "system_health"]

API Client Specifications

Official SDKs

python:
  version: "1.2.0"
  python_version: ">=3.8"
  dependencies: ["requests>=2.25.0", "pydantic>=1.8.0"]

javascript:
  version: "2.1.0"
  node_version: ">=14.0.0"
  dependencies: ["axios>=0.21.0", "typescript>=4.0.0"]

java:
  version: "1.5.0"
  java_version: ">=11"
  dependencies: ["okhttp4", "gson"]

csharp:
  version: "1.3.0"
  dotnet_version: ">=6.0"
  dependencies: ["Newtonsoft.Json", "HttpClient"]

go:
  version: "1.1.0"
  go_version: ">=1.18"
  dependencies: ["net/http", "encoding/json"]

These technical specifications provide the foundation for understanding, integrating with, and deploying the MindPeeker platform at scale. All specifications are regularly updated to reflect platform improvements and industry best practices.