graph TB
subgraph "Client Layer"
WEB[Web Application]
MOBILE[Mobile Apps]
API_CLIENT[API Clients]
end
subgraph "Gateway Layer"
GATEWAY[API Gateway]
AUTH[Authentication Service]
RATE_LIMIT[Rate Limiting]
end
subgraph "Application Layer"
SESSION[Session Service]
ANALYSIS[Analysis Engine]
NOTIFICATION[Notification Service]
BILLING[Billing Service]
end
subgraph "AI/ML Layer"
CORE_AI[Core AI Engine]
MODEL_MGR[Model Manager]
INFERENCE[Inference Service]
TRAINING[Training Pipeline]
end
subgraph "Data Layer"
POSTGRES[(PostgreSQL)]
REDIS[(Redis Cache)]
S3[(Object Storage)]
BACKUP[Backup System]
end
subgraph "Infrastructure"
K8S[Kubernetes Cluster]
MONITORING[Monitoring Stack]
LOGGING[Logging System]
SECURITY[Security Layer]
end
WEB --> GATEWAY
MOBILE --> GATEWAY
API_CLIENT --> GATEWAY
GATEWAY --> AUTH
GATEWAY --> RATE_LIMIT
GATEWAY --> SESSION
GATEWAY --> ANALYSIS
GATEWAY --> NOTIFICATION
GATEWAY --> BILLING
SESSION --> CORE_AI
ANALYSIS --> CORE_AI
CORE_AI --> MODEL_MGR
CORE_AI --> INFERENCE
CORE_AI --> TRAINING
SESSION --> POSTGRES
ANALYSIS --> POSTGRES
AUTH --> POSTGRES
BILLING --> POSTGRES
INFERENCE --> REDIS
SESSION --> REDIS
TRAINING --> S3
SESSION --> S3
POSTGRES --> BACKUP
S3 --> BACKUP
Production: https://api.mindpeeker.com/v1
Staging: https://staging-api.mindpeeker.com/v1
Development: https://dev-api.mindpeeker.com/v1
Authorization: Bearer <jwt_token>
X-API-Key: <api_key>
X-Client-Version: <version>
{
"success": true,
"data": {},
"message": "Operation successful",
"timestamp": "2024-01-01T00:00:00Z",
"requestId": "req_123456789"
}
wss://api.mindpeeker.com/v1/ws
{
"type": "session_update",
"sessionId": "session_123",
"data": {},
"timestamp": "2024-01-01T00:00:00Z"
}
-- Users table
CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
email VARCHAR(255) UNIQUE NOT NULL,
username VARCHAR(100) UNIQUE NOT NULL,
password_hash VARCHAR(255) NOT NULL,
tier VARCHAR(50) NOT NULL DEFAULT 'basic',
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
-- Sessions table
CREATE TABLE sessions (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
user_id UUID NOT NULL REFERENCES users(id),
cue TEXT NOT NULL,
session_type VARCHAR(50) NOT NULL,
status VARCHAR(50) NOT NULL DEFAULT 'pending',
metadata JSONB,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
completed_at TIMESTAMP WITH TIME ZONE
);
-- Analysis results table
CREATE TABLE analysis_results (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
session_id UUID NOT NULL REFERENCES sessions(id),
result_type VARCHAR(100) NOT NULL,
confidence_score DECIMAL(5,4) NOT NULL,
data JSONB NOT NULL,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
Session Cache:
- session:{id} -> Session data (TTL: 24h)
- session:{id}:status -> Session status (TTL: 1h)
- session:{id}:results -> Analysis results (TTL: 7d)
User Cache:
- user:{id} -> User profile (TTL: 1h)
- user:{id}:permissions -> User permissions (TTL: 30m)
- user:{id}:rate_limit -> Rate limit counter (TTL: 1m)
System Cache:
- config:system -> System configuration (TTL: 5m)
- models:active -> Active model list (TTL: 10m)
- stats:realtime -> Real-time statistics (TTL: 30s)
Remote Viewing Model:
- Specialized in visual and spatial data
- Trained on 500K+ remote viewing sessions
- Optimized for geographical and object recognition
Dowsing Model:
- Specialized in yes/no and location queries
- Trained on 1M+ dowsing sessions
- Optimized for binary classification and probability
Precognition Model:
- Specialized in temporal predictions
- Trained on 200K+ precognitive sessions
- Optimized for time-series forecasting
Intuitive Analysis Model:
- Specialized in complex pattern recognition
- Trained on 300K+ analytical sessions
- Optimized for multi-dimensional analysis
{
"header": {
"alg": "RS256",
"typ": "JWT",
"kid": "key-id"
},
"payload": {
"sub": "user-uuid",
"iat": 1640995200,
"exp": 1641081600,
"aud": "mindpeeker-api",
"iss": "mindpeeker-auth",
"tier": "professional",
"permissions": ["session:create", "analysis:read"]
}
}
Public Data:
- Marketing materials
- Public documentation
- General platform information
Internal Data:
- System metrics
- Performance data
- Internal documentation
Confidential Data:
- User personal information
- Session metadata
- Billing information
Restricted Data:
- Session content
- Analysis results
- AI model parameters
Authentication:
- Login: <500ms (95th percentile)
- Token refresh: <200ms (95th percentile)
- Logout: <100ms (95th percentile)
Session Management:
- Create session: <1s (95th percentile)
- Get session: <500ms (95th percentile)
- Update session: <800ms (95th percentile)
- Delete session: <300ms (95th percentile)
AI Analysis:
- Start analysis: <2s (95th percentile)
- Get results: <500ms (95th percentile)
- Real-time updates: <100ms (95th percentile)
Database:
- Query response: <100ms (95th percentile)
- Connection pool: 95% utilization
- Transaction time: <50ms average
Cache:
- Hit ratio: >95%
- Response time: <10ms (95th percentile)
- Memory usage: <80% capacity
AI Models:
- Inference latency: <2s average
- Queue time: <30s (95th percentile)
- GPU utilization: >80%
User Growth:
- Concurrent users: 10,000+
- Daily active users: 100,000+
- Monthly active users: 1M+
Session Volume:
- Sessions per day: 1M+
- Peak sessions per hour: 100K+
- Storage per session: 10MB average
API Traffic:
- Requests per day: 100M+
- Peak requests per minute: 1M+
- Data transfer: 10TB+ per day
business_metrics:
- sessions_created_total
- sessions_completed_total
- analysis_duration_seconds
- user_tier_distribution
- api_usage_by_endpoint
technical_metrics:
- http_requests_total
- http_request_duration_seconds
- database_connections_active
- cache_hit_ratio
- ai_inference_duration_seconds
infrastructure_metrics:
- cpu_utilization_percent
- memory_utilization_percent
- disk_io_operations_total
- network_bytes_transmitted
- gpu_utilization_percent
critical:
- name: "High Error Rate"
condition: "error_rate > 5%"
duration: "5m"
severity: "critical"
- name: "AI Model Down"
condition: "model_availability < 99%"
duration: "1m"
severity: "critical"
warning:
- name: "High Response Time"
condition: "p95_response_time > 2s"
duration: "10m"
severity: "warning"
- name: "Database Connection Pool High"
condition: "db_connections > 80%"
duration: "15m"
severity: "warning"
{
"timestamp": "2024-01-01T00:00:00.000Z",
"level": "INFO",
"service": "session-service",
"trace_id": "trace-123456",
"span_id": "span-789012",
"user_id": "user-456789",
"session_id": "session-123456",
"message": "Session created successfully",
"metadata": {
"session_type": "remote_viewing",
"cue_length": 150,
"processing_time_ms": 1250
}
}
development:
replicas: 1
resources:
cpu: "500m"
memory: "1Gi"
database:
type: "postgresql"
size: "small"
cache:
type: "redis"
size: "micro"
ai_models:
count: 1
gpu: false
staging:
replicas: 2
resources:
cpu: "1000m"
memory: "2Gi"
database:
type: "postgresql"
size: "medium"
cache:
type: "redis"
size: "small"
ai_models:
count: 2
gpu: true
production:
replicas: 10
resources:
cpu: "2000m"
memory: "4Gi"
database:
type: "postgresql"
size: "xlarge"
cache:
type: "redis"
size: "large"
ai_models:
count: 20
gpu: true
stages:
- name: "lint"
tool: "eslint"
timeout: "5m"
- name: "test"
tool: "jest"
coverage: ">80%"
timeout: "10m"
- name: "security_scan"
tool: "snyk"
timeout: "5m"
- name: "build"
tool: "docker"
timeout: "15m"
- name: "deploy"
tool: "helm"
timeout: "20m"
stripe:
api_version: "2023-10-16"
webhooks:
- "payment_intent.succeeded"
- "invoice.payment_succeeded"
- "customer.subscription.created"
features:
- "subscriptions"
- "one_time_payments"
- "international_cards"
sendgrid:
api_version: "v3"
templates:
welcome: "d-1234567890"
subscription_created: "d-0987654321"
analysis_complete: "d-1122334455"
features:
- "transactional_email"
- "marketing_campaigns"
- "email_analytics"
analytics:
providers:
- name: "mixpanel"
events: ["user_signup", "session_created", "analysis_completed"]
- name: "google_analytics"
events: ["page_view", "user_engagement"]
monitoring:
- name: "datadog"
metrics: ["api_performance", "user_activity", "system_health"]
python:
version: "1.2.0"
python_version: ">=3.8"
dependencies: ["requests>=2.25.0", "pydantic>=1.8.0"]
javascript:
version: "2.1.0"
node_version: ">=14.0.0"
dependencies: ["axios>=0.21.0", "typescript>=4.0.0"]
java:
version: "1.5.0"
java_version: ">=11"
dependencies: ["okhttp4", "gson"]
csharp:
version: "1.3.0"
dotnet_version: ">=6.0"
dependencies: ["Newtonsoft.Json", "HttpClient"]
go:
version: "1.1.0"
go_version: ">=1.18"
dependencies: ["net/http", "encoding/json"]
These technical specifications provide the foundation for understanding, integrating with, and deploying the MindPeeker platform at scale. All specifications are regularly updated to reflect platform improvements and industry best practices.